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Abstract

In previous works, the Local Linearization method has been expanded for the simulation
of a speci�c type of stochastic di¤erential equations driven by semimartingales, namely equa-
tions with additive noise. The e¤ectiveness of the resulting Local Linear approximation was
shown by means of simulations, and a strong convergence result was also obtained for such
approximation. In this note, the Local Linearization method is extended to a notably wider
class of equations, and the resulting Local Linear approximations are proved to be bounded
and convergent uniformly on compacts in probability.
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1 Introduction

There exist a wide variety of methods for approximating the trajectories of stochastic di¤erential
equations (SDEs) driven by Brownian motions (see, e.g., [2],[9]). In contrast, for SDEs driven
by Lévy processes or general semimartingales, the Euler method has been the main approach for
designing strong numerical approximations (see, e.g., [1]; [3]; [4]; [5]). Alternatively, in [12] the
known Local Linearization method for di¤usion or jump-di¤usions processes was expanded for
the simulation of a speci�c type of SDEs driven by semimartingales. In that work, a comparison
with the Euler method from the viewpoint of stability of the simulated paths was emphasized. In
such simulation study, carried out with a number of moderate sti¤ equations driven by ��stable
Levy processes, the explosive trajectories of Euler method contrast with the stable paths of the
Local Linearization method. In [11], the strong convergence of the approximation considered in
[12] was also proved. This desirable performance of the Local Linearization approach motives
the further developments that we report in what follows.
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First, in this note, the Local Linearization method is extended to a notably wider class of
SDEs driven by semimartingales. Furthermore, the resulting Local Linear approximations are
proved to be bounded and convergent uniformly on compacts in probability.

2 Local Linearization method

Let (
;F ; P ) be a complete probability space, (Ft)t�0 be an increasing right continuous family
of complete sub �-algebras of F , and Dd be the space of Rd-valued, adapted processes with
càdlàg paths. Consider the stochastic di¤erential equation

Xt = X0 +

Z t

0
f (�;X�)s� ds+

Z t

0
g (�;X�)s� dZs +

Z t

0
h(�)s�dZs; (1)

where (Zt)t�0 is an Rd-valued semimartingale with respect to (Ft)t�0, Z0 = 0, the random
vector X0 2 Rd is F0-measurable, and f : R+�Rd ! Rd, g : R+�Rd ! Rd�m, h : R+ ! Rd�m
are functions with continuous �rst derivatives. Suppose that (1) has a unique strong solution
(Xt)t�0 on Dd as stated, e.g., in [10] (Theorem 7, pp. 197).

In order to construct a numerical approximation to the solutionX, let �N (N = 1; 2; :::) be a
sequence of random partitions 0 = TN0 � TN1 � ::: � TNkN formed by �nite stopping times T

N
n such

that limN TNKN
= 1 almost surely (a.s.) and limN max

�
TNn+1 � TNn : n = 0; 1; :::; kN � 1

	
= 0

a.s. The convention TNkN+1 = 1 is adopted. For simplicity, TNn will eventually be denoted by
Tn.

The Local Linearization method is a general strategy for designing numerical integrators
for di¤erential equations based on a local (piecewise) linearization of the given equation on
consecutive time intervals. The numerical integrators are then iteratively de�ned as the solution
of the resulting piecewise linear equation at each consecutive interval. Speci�cally, by applying
this strategy to the SDE (1) the following approximation results:

Yt = YTn+

Z
]Tn;t]

(fn + Jn (Ys� �YTn) + dn (s� Tn)) ds+
Z
]Tn;t]

g (�;Y�)s� dZs+
Z
]Tn;t]

h(�)s�dZs

(2)
for t 2 ]Tn; Tn+1], where fn = f (Tn;YTn), Jn = fX (Tn;YTn), and dn = ft (Tn;YTn), being fX
and ft the derivatives of f (x;t) with respect to x and t, respectively. By following the ideas of
previous works on Local Linearization methods for di¤usion processes, jump di¤usion processes
and SDEs driven by driven by ��stable Levy processes (see, e.g., [7],[13],[6],[12]), a number of
Local Linearization schemes can be derived by approximating the integrals in the right hand
side of (2). For instance, we de�ne the numerical schemes given by

YTn+1 = YTn +

Z
]Tn;Tn+1]

e(Tn+1�s)Jn (fn + dn (s� Tn)) ds+ gn
�
ZTn+1 � ZTn

�
(3)

for equations with pure multiplicative noise (i.e., h � 0), and the scheme

YTn+1 = YTn +

Z
]Tn;Tn+1]

e(Tn+1�s)Jn (fn + dn (s� Tn)) ds+ L]Tn;Tn+1] (4)
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for equations with pure additive noise (i.e., g � 0). Here, gn = g (Tn;YTn) and L]Tn;Tn+1] is an
approximation to the integral

R
]Tn;Tn+1]

h(�)s�dZs. In general, for equations with both additive
and multiplicative noise, we consider the scheme

YTn+1 = YTn +

Z
]Tn;Tn+1]

e(Tn+1�s)Jn (fn + dn (s� Tn)) ds+ gn
�
ZTn+1 � ZTn

�
+ L]Tn;Tn+1]: (5)

A number of previous works (e.g., [7], [6] and [12]) can be consulted for di¤erent ways to
compute the integral involving matrix exponential in (3), (4) and (5), and also for designing
approximations L]Tn;Tn+1] for particular types of processes Z.

It is worth to mention that the wide family of schemes just de�ned notably extends the
earlier works [11] and [12], which deal with an speci�c approximation of the form (4) for the
SDE (1) with pure additive noise (g � 0).

3 Bound and convergence

In what follows, j�j denotes the Frobenious norm for vectors and matrices, ^ the minimum of
two numbers, and � the process de�ned by

nt = max fn : Tn � t; 0 � n � kNg :

All the Local Linearization schemes introduced in the previous section can be written as
solutions of integral equations of the general form

YN
t = X0 +

Z t

0
FN

�
t;YN

�
�
s� ds+

Z t

0
GN

�
t;YN

�
�
s� dZs + L

N
t ; t � 0; (6)

evaluated at the time instants t 2 �N , where

FN
�
t;YN

�
�
s
= e(t^Tns+1�s)Jns (fns + dns (s� Tns)) ;

GN
�
t;YN

�
�
s
= gns ;

and LNt is a semimartingale that approximates the integral

Lt =

Z t

0
h(�)s�dZs

on the time partition �N , with LNt=0 = 0.
For later reference, let us state the following standard conditions on the coe¢ cients of the

equation (1).

Hypothesis 1 Suppose that
i) f 2 C2

�
R+ � Rd;Rd

�
, g 2 C2

�
R+ � Rd;Rd�m

�
and h 2 C2

�
R+;Rd�m

�
;

ii) jf (t;x)j � K1 (1 + jxj) and jg (t;x)j � K1 (1 + jxj) ;
iii)

�� @
@x f (t;x)

�� � K2 and �� @@xg (t;x)�� � K2
for all t 2 R+, x 2 Rd, where K1 and K2 are positive constants.
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The next theorem shows that the Local Linear approximation YN
t de�ned in (6) is uniformly

bounded on compacts in probability.

Theorem 2 Under the Hypothesis 1, for any s0 > 0, sup0�t�s0
��YN

t

�� is bounded in probability
uniformly in N .

Proof. For simplicity, in what follows, write Yt = YN
t . From (6) it follows that, for all t � 0,

jYtj=
�����X0 +

Z
]0;t]

FN (t;Y)s� ds+

Z
]0;t]

GN (t;Y)s� dZs +

Z
]0;t]

dLNs

�����
� jX0j+

�����
Z
]0;t]

FN (t;Y)s� ds

�����+
�����
Z
]0;t]

GN (t;Y)s� dZs

�����+
�����
Z
]0;t]

dLNs

����� :
Let M > 0 be an arbitrary constant. De�ne

�M = 1fjX0j�Mg; eYt = Yt�M ; and 't = sup
0�s�t

��� eYs���2 :
Then,

��� eYt��� �M +

�����
Z
]0;t]

FN (t;Y)s� �Mds

�����+
�����
Z
]0;t]

GN (t;Y)s� �MdZs

�����+
�����
Z
]0;t]

�MdL
N
s

����� :
This and the elementary inequality (a1 + :::+ aq)

2 � 2q�1
�
a21 + :::+ a

2
q

�
imply that

E
�
'��

�
� 8M2 + 8E sup

t<�

�����
Z
]0;t]

FN (t;Y)s� �Mds

�����
2

+ 8E sup
t<�

�����
Z
]0;t]

GN (t;Y)s� �MdZs

�����
2

+8E sup
t<�

�����
Z
]0;t]

�MdL
N
s

�����
2

(7)

for any stopping time � .
Let A be a control processes for the semimartingales Z, LNt and (t)t�0 (see, e.g., [8]). De�ne

the stopping times
� j = inf ft 2 R+ : At > jg for j 2 N.

From (7), A�j� � j and Theorem 24.4 in [8] it follows that, for any stopping time � � � j ,

E
�
'��

�
� 8M2 + j8E

(Z
]0;� [

��FN (t;Y)s� �M ��2 dAs
)
+ j8E

(Z
]0;� [

��GN (t;Y)s� �M
��2 dAs)

+j8E

(Z
]0;� [

�MdAs

)
:
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Fix an arbitrary t0 > s0, and set � j0 = � j ^ t0. Let � be any stopping time � � � j0. By
Hypothesis 1, for all s � t � � , ��FN (t;Y)s����K(1 + ���YTns� ���);��GN (t;Y)s�

���K(1 + ���YTns� ���);
where K is a positive constant. Thus,

E
�
'��

�
� 8M2 + j16K2E

(Z
]0;� [

�
�M +

���YTns��M ���2� dAs
)

+j16K2E

(Z
]0;� [

�
�M +

���YTns��M ���2� dAs
)
+ j8E

(Z
]0;� [

�MdAs

)

� 8M2 + j32K2E

(Z
]0;� [

�
�M + 's�

�
dAs

)
+ j8E

(Z
]0;� [

�MdAs

)
:

Therefore, there exist positive constants C0 and C1 (depending on M and j but not on N) such
that

E
�
'��

�
� C0 + C1E

(Z
]0;� [

's�dAs

)
:

Since here the stopping time � � � j0 is arbitrary, Lemma 29.1 in [8] implies that

E
�
'�j0�

�
� 2C0

[2jC1]X
i=0

(2jC1)
i ; (8)

where [�] denotes the integer part of a real number.
Furthermore, for any constant R > 0,

P

�
sup

0�t�s0
jYtj > R

�
�P

�
sup
0�t<t0

jYtj > R
�

�P
�
'
1=2
t0� > R

�
+ P (jX0j > M)

�P
�
'
1=2
�j0� > R

�
+ P (� j0 < t0) + P (jX0j > M)

�
E
�
'�j0�

�
R2

+ P (� j0 < t0) + P (jX0j > M) ; (9)

where the second inequality follows from the de�nition of 't, the third one from basic rules of
the calculus of probabilities of events, and the last one from the Markov�s inequality.

The assumption thatX0 is a �nite random vector implies that P (jX0j > M)! 0 asM !1.
Since A has �nite left and right limits a.s., limj � j = 1 a.s., and so limj P (� j0 < t0) = 0.
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Furthermore, (8) implies that for each �xed j, E
�
'�j0�

�
=R2 ! 0 uniformly in N as R ! 1.

From these facts and (9) it follows that that, P
�
sup0�t�s0 jYtj > R

�
! 0 uniformly in N as

R!1:
In what follows, the Local Linear approximation (6) is studied in the sense of convergence

uniformly on compacts in probability (ucp) as it is de�ned, for instance, in [10].

Lemma 3 Under the Hypothesis 1 it holds that
i) FN

�
t;XN�

�
s
converges to f (�;X�)s in ucp;

ii) GN
�
t;XN�

�
s
converges to g (�;X�)s in ucp.

Proof. Consider t; s � 0 with s � t. Since f 2 C1 and f has linear growth,��FN �t;XN� �s � f (�;X�)s��= ���e(t^Tns+1�s)Jns (fns + dns (s� Tns))� f (s;Xs)���
�
���e(t^Tns+1�s)Jns fns � f (s;Xs)���+ ���e(t^Tns+1�s)Jnsdns (s� Tns)���

�
���e(t^Tns+1�s)Jns (f �Tns ;X�ns�� f (s;Xs))���
+
���(e(t^Tns+1�s)Jns � I)f (s;Xs)���+ ���e(t^Tns+1�s)Jnsdns (s� Tns)���

�K1
���e(t^Tns+1�s)Jns ��� ��XTns �Xs��+K2 ���e(t^Tns+1�s)Jns � I��� jXsj

+
���e(t^Tns+1�s)Jnsdns��� (s� Tns) ;

where I denotes the d�dimensional identity matrix. Denote �N = maxn
��TNn+1 � TNn ��. It can be

assumed that TNkN � t by taking N large enough. Then, js� Tns j � �N and jt ^ Tns+1 � sj � �N .
Since sup0�s�T jXsj <1 and �N ! 0 as N goes to 1,

P

 
sup
0�s�T

��FN �t;XN� �s � f (�;X�)s�� > r
!
! 0 as N !1

for any constant r > 0. Similarly,

P

 
sup
0�s�T

��GN
�
t;XN�

�
s
� g (�;X�)s

�� > r!! 0 as N !1;

which concludes the proof.

Theorem 4 Suppose that the approximation LNt is a semimartingale that converges to Lt in
ucp. Then, under the Hypothesis 1, the Local Linear approximation YN

t de�ned in (6) converges
to the solution Xt of (1) in ucp.

Proof. The thesis is a directly consequence of Lemma 3 and Theorem 15, pp. 209, in [10].
Acknowledgments. The second author thanks the �nancial support of CIMAT to this research
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